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A metal-free aromatic cascade has been developed for the synthesis of diverse heterocycles from readily

accessible hydroxy/aminochalcones and acid/alkyl halides. The cascade is initiated by a base-mediated

intramolecular aldol cyclization/dehydration sequence to provide a triene, which sets the stage for a

6π-electrocyclization/oxidative aromatization to access diverse heterocyclic scaffolds.

Cascade reactions are an elegant strategy for assembling
complex molecules in organic synthesis.1 Delivering high
efficiency and atom economy, cascade reactions use multiple
transformations in a one-pot fashion.2 Employing cascade
reactions as an approach eases reaction workup, purification,
time, and waste management.3 These advantages altogether
make cascade reactions ideal for green chemical synthesis.4

In continuing our work on cascade approaches for
medium-sized scaffolds,5 we designed a metal-free cascade
comprising an intramolecular aldol reaction/anionic oxy-Cope
rearrangement to furnish 10-membered lactones (Scheme 1a).
The cascade precursor is readily accessible through the stan-
dard coupling of hydroxychalcones to unsaturated acids.
However, when we exposed precursor 1 (R = Me) to basic con-
ditions, we recovered a complex mixture of products. We sus-
pected that the additional methyl group dissuaded the desired
enolization, leading to ketene formation and subsequent frag-
mentation of the hydroxychalcone component.6 When the
methyl group was removed (R = H), we did not observe any
trace of the desired macrolactone, but small quantities of the
aromatized benzo[c]coumarin 3, which was presumably
formed via an intramolecular 6π-electrocyclization of 1,3,5-
triene 2 (Scheme 1b).7

Although there are examples in the literature of
6π-electrocyclization employed in the synthesis of biologically
relevant natural products,8 this serendipitous cascade rep-
resents a unique approach for the construction of functiona-
lized benzo[c]coumarins that does not rely on modification of
a pre-formed coumarin scaffold.9

Inspired by these results, we envision applying this
approach to the synthesis of heterocyclic scaffolds, which are
found in numerous natural products and drug molecules. In
particular, the benzo[c]coumarin core can be found in several
natural products, and has recently been used as a precursor to
access the cannabinoid receptor agonist cannabinol.10d In
addition, the related heterocycles such as phenanthridin-6
(5H)-ones, dibenzofurans, and carbazoles are also commonly
found in nature and are medicinally relevant compounds
(Fig. 1).10

Although there are multiple methods currently available in
the literature for the synthesis of these heterocycles, most rely
on the use of transition metal catalysts.11 With high cost and
difficult purification, reducing the use of expensive transition

Scheme 1 (a) Anionic oxy-Cope approach to 10-membered macrolac-
tones. (b) Serendipitous approach to benzo[c]coumarins.
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metal catalysts in chemical reactions is a unifying goal in the
synthetic community.12 Keeping these advantages in mind,
our serendipitous cascade is attractive and provides an
alternative metal-free method for the synthesis of aromatic
heterocycles.

We commenced our reaction optimization for the for-
mation of benzo[c]coumarin 3. When precursor 1 was exposed
to K2CO3 in refluxing acetone for 16 hours, we observed com-
plete conversion of 1 to triene 2, with further conversion to 3
(Table 1, entry 1). These reaction conditions however resulted
in a low overall yield of 3. We then attempted the reaction uti-
lizing organic bases, beginning with Et3N. After 16 hours of
stirring at reflux temperature in dichloromethane, we observed
no conversion to triene 2 and pure 1 was recovered (entry 2).
When a stronger base (DBU) was utilized, we observed full con-
version of 1 to furnish a mixture of 2 and 3 (entry 3). Inspired

by recent reports on the 6π-electrocyclization of 1,3,5-triene
systems,9 DMSO was employed as the reaction solvent, and
improved conversion of 2 to 3 was observed (entry 4). When
the reaction mixture was heated to 80 °C in DMSO, full conver-
sion of 2 to 3 was observed, with an isolated yield of 82%
(entry 5).

The reaction was also successful using lower quantities of
the base; however, a notable decrease in the isolated yield was
observed (entries 6 and 7) with a longer reaction time. When
0.1 equivalents of base were utilized, an incomplete conversion
of 1 was observed, and 3 was obtained in trace quantity
(entry 8).

With optimized conditions in hand, we turned our atten-
tion towards the substrate scope for this cascade (Fig. 2). The
reaction was amenable for substituents on the pre-existing aro-
matic ring, resulting in good yields of compounds 3b and 3c.
Next, we explored the electronic influence of the triene on the
overall reaction cascade. Electron-neutral and electron-donat-
ing substituents were well-tolerated and resulted in good to
excellent yields (3d–3f ). The reaction though was low-yielding
with the trifluoromethyl-substituted compound 3g. Reaction
conditions were also tolerant of other heterocycles comprising
the chalcone component, and furan-substituted 3h was syn-
thesized in good yield. Finally, a lower yield was observed for
the methyl-substituted compound 3i, and in this instance, we
observed byproducts arising from incomplete electrocycliza-
tion in the crude NMR.

Addressing a limitation in some of the current electrocycli-
zation-based methods for benzo[c]coumarin formation, we
wondered whether our method was suitable for synthesizing
their nitrogen analogues, phenanthridin-6(5H)-ones (Fig. 3).9a

By coupling N-alkylaminochalcones to crotonyl chloride, we
were able to access precursors 4 in a three-step sequence. The

Fig. 1 Aromatic heterocycles in natural products.

Table 1 Reaction optimization for the aldol elimination/electrocycliza-
tion sequence

Entry Base (equiv.) Solvent Temp. 2/3 b

1 K2CO3 (3.0) Acetone Reflux 1 : 2 (23)c

2 Et3N (3.0) DCM Reflux N.R.
3 DBU (3.0) DCM rt 95 : 5
4 DBU (3.0) DMSO rt 90 : 10
5 DBU (3.0) DMSO rt → 80 °C 0 : 100 (82)c

6 DBU (2.0) DMSO rt → 80 °C 0 : 100 (64)c

7 DBU (1.0) DMSO rt → 80 °C 0 : 100 (45)c

8 DBU (0.1) DMSO rt → 80 °C Trace

a All optimization reactions were performed by adding a base at room
temperature to a solution of 1 in DMSO (0.15 M). The reaction vessel
was sealed and heated at the indicated temperature for 16 hours. b The
percent ratio of 2 and 3 was determined by crude 1H NMR integration.
c Isolated yield of 3 obtained after column chromatography. N.R. = no
reaction.

Fig. 2 Scope of benzo[c]coumarin substrate examples; all reactions
were performed by adding DBU (3.0 equiv.) to a 0.15 M solution of
1 (1.0 equiv.) in DMSO at room temperature. After stirring for 90 minutes
at room temperature, the reaction mixture was heated to 80 °C for
16 hours. aReaction was also performed on a 1-gram scale with an iso-
lated yield of 76%.
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parent compound 5a was synthesized in excellent yield, and
notably, was suitable for a 1-gram scale-up, with only a slight
decrease in the overall yield (89%). The reaction also tolerated
other N-protecting groups well, with benzyl-protected 5b syn-
thesized in comparable yield. Alkyl protection of the amide
was crucial to the success of this reaction; however, when the
free N–H amide was exposed to the optimized DBU heating
conditions, a complex mixture of products was recovered.
Similarly, the reaction conditions were not suitable for the
common nitrogen protecting groups tert-butylcarbamate (boc)
and the tosyl group.13 In both the cases, cleavage of the croto-
nylamide bond was observed at room temperature, resulting in
the recovery of the corresponding aminochalcone precursor.

Like their oxygen-containing counterparts, the cascade was
tolerant of electron-neutral and electron-donating substituents
(5f–5h). Again, we observed diminished yields with electron-
withdrawing substituents, with cyano-substituted 5i syn-
thesized in only moderate yields. We observed higher yields
overall for the synthesis of these phenanthridin-6(5H)-ones,
presumably due to the disfavoured ketene-mediated fragmen-
tation of 4, relative to 1, in the presence of a strong base.6

A plausible reaction mechanism for this cascade is shown
in Scheme 2. First, γ-deprotonation of crotonate A generates
enolate B which undergoes an α-enolate attack on the ketone
followed by the loss of water to generate 1,3,5-triene C. Under
heating conditions, triene C can undergo a
6π-electrocyclization forming D, which is capable of aromatiza-
tion via an aerial oxidation,14 generating benzocoumarin or
phenanthridinone E.

Several experiments were performed to validate the pro-
posed reaction mechanism. We were able to isolate triene C
after 90 minutes of stirring at room temperature in the pres-

ence of DBU. When triene C is exposed to the same DBU con-
ditions while heating to 80 °C for 16 hours, E is obtained in
good yield supporting our proposal that it is an intermediate
in this process. It was also found that the addition of the
single electron oxidant DDQ can promote the oxidation of D to
E. We then probed whether the reaction cascade could be
accomplished via direct α-enolization of esters 1, instead of
indirect γ-enolization. When hydroxychalcone was coupled to
vinylacetic acid, we observed complete olefin isomerization to
give exclusively α,β-unsaturated product 1a.

Fortunately, when hydroxychalcone was coupled to various
arylacetic acids, we were able to isolate esters 6 in good yields
(Fig. 4). These substrates tolerated α-enolization well and
underwent the desired aldol elimination/6π-electrocyclization
cascade at 120 °C to provide heterocycles 7a–7d in yields
ranging from good to excellent. The reaction conditions were
also suitable for the formation of phenanthridinones 7e and
7f. Unfortunately, phenyl- and pyridine-substituted 6g and 6h,

Fig. 3 Scope of phenanthridin-6(5H)-one substrate examples; all reac-
tions were performed by adding DBU (3.0 equiv.) to a 0.15 M solution of
1 (1.0 equiv.) in DMSO at room temperature. After stirring for 90 minutes
at room temperature, the reaction mixture was heated to 80 °C for
16 hours. aReaction was also performed on a 1-gram scale with an iso-
lated yield of 89%.

Scheme 2 Proposed mechanism for the formation of benzo[c]cou-
marins and Phenanthridin-6(5H)-ones.

Fig. 4 Scope of the electrocyclization cascade incorporating an aryl
component; all reactions were performed by adding DBU (3.0 equiv.) to
a 0.15 M solution of 1 (1.0 equiv.) in DMSO at room temperature. After
stirring for 90 minutes at room temperature, the reaction mixture was
heated to 120 °C for 16 hours. aCompound was prone to intramolecular
aldol elimination under coupling conditions and the reaction was per-
formed using the corresponding triene.
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respectively, did not undergo electrocyclization after triene for-
mation, even when the reaction temperature was elevated to
180 °C.

Lastly, we turned our attention towards accessing other
benzannulated heterocyclic scaffolds, namely dibenzofurans
and carbazoles (Fig. 5). By changing the chalcone coupling
partner to ethyl 4-bromocrotonate, compounds 8 and 9 were
prepared. We envision that when exposing to a base, they
could undergo enolization via γ-deprotonation, and unlike
their 1 and 4 counterparts, act as nucleophiles from the
γ-position as opposed to the α-position, setting the stage for
the 6π-electrocyclization step. Indeed, when 8 and 9 were
exposed to the optimized DBU heating conditions, 10 and 11
could be isolated in good yields. Notably, this reaction
required heating to 120 °C, as evidence of incomplete electro-
cyclization was observed after heating to 80 °C for 16 hours.15

In conclusion, we have disclosed a new method for
the preparation of benzo[c]coumarin and phenanthridin-
6(5H)-one scaffolds via a one-pot aldol elimination/
6π-electrocyclization/oxidative aromatization reaction cascade.
This new metal-free method benefits from high atom
economy, a straightforward synthesis of the starting material,
and moderate to high yields. By altering the chalcone coupling
partner, dibenzofurans and carbazoles can also be prepared in
moderate yields using the method described herein.
Application of this cascade to other scaffolds is currently
underway and will be reported in due course.
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